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Abstract 

A review is presented of several aspects of crystallization processes in glass and their impact on 
glass-forming ability. Herein, both isothermal and non-isothermal processes are considered. For 
isothermal crystallization processes, generalizations of the Johnson Mehl Avrami Kol- 
mogorov (JMAK) theory are described and the status of certain features of nucleation rate and 
crystal growth calculations in glasses are given. For non-isothermal crystallization, some 
features of DTA/DSC analyses and critical cooling rate calculations for glass-formation are 
discussed, and generalizations of the standard theory for computation of the fraction crystallized 
are presented. 
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1. Introduction 

The topic of crystallization kinetics is of essential importance for glass formation and 
glass-ceramic synthesis. According to the kinetic viewpoint of glass formation [1, 2], 
the glass-forming ability of a composition may be assessed by its reluctance to undergo 
crystallization. Hence, glass formation may be considered in terms of a competition 
between crystallization and cooling. These notions have been formulated in a quanti- 
tative manner, and critical cooling rates for glass formation have been calculated for 
simple systems [3-5].  

The existing descriptions of isothermal and non-isothermal crystallization processes 
in glasses are based upon two fundamental theories: classical nucleation theory (CNT) 
[6-8],  and the Johnson Mehl-Avrami-Kolmogorov (JMAK) theory [9 12]. The 
former provides a means for the computation of crystal cluster size distributions and 
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cluster growth rates, while the latter allows one to calculate the volume fraction 
crystallized in terms of crystal nucleation and growth rates. Thus, CNT provides the 
input parameters for the formal theory of transformation kinetics expressed by JMAK 
theory. However, within the past couple of decades, it has been recognized that both 
CNT and JMAK formalisms have certain limitations and must be modified or 
generalized in order to be applicable to crystallization processes in glasses [13 15]. 
Herein, some of these generalizations will be discussed. 

Crystallization processes can be studied under isothermal or non-isothermal condi- 
tions. Although isothermal crystallization is easier to describe, most recent studies have 
been performed non-isothermally due to the widespread availability of DTA/DSC 
instruments. Often the analyses of the latter class of experiments have not been 
executed critically, and hence many of the DSC/DTA studies which have been 
published provide little insight into the crystallization mechanisms which are operative 
in various compositions. Although Yinnon and Uhlmann [16] have given a critical 
evaluation of the analysis of non-isothermal DTA/DSC experiments in the not too 
distant past, some discussion of this topic will be presented in this paper. 

In the next section, the isothermal crystallization of glass will be considered. In 
particular, the calculation of the volume fraction crystallized as a function of time, X ( t ) ,  

will be reviewed and discussed for several different cases. In addition, theoretical 
expressions commonly used for crystal nucleation and growth rates will be assessed. In 
the section thereafter, non-isothermal crystallization processes will be analyzed. Sev- 
eral issues relating to calculation of critical cooling rates and analysis of DTA/DSC 
experiments will be discussed. The final section will present some concluding remarks. 

2. Isothermal crystallization 

For isothermal crystallization, X ( t )  is usually computed from the JMAK equation 

ln(1 - X ( t ) )  1 = C i U ,  t , + : / ( n +  1) (1) 

where U is the crystal growth rate, I is the steady-state crystal nucleation rate, C is 
a geometric factor dependent upon crystal shape, and n is an integer and corresponds to 
the dimensionality of the crystallization process. Although it is not always explicitly 
stated, Eq. (1) is limited by the following conditions: (a) I is time-independent, (b) U is 
size-independent, (c) nucleation occurs randomly and uniformly, and (d) growth is 
interface-controlled. 

Zanotto and coworkers [17, 18] and Weinberg [19] have evaluated the accuracy of 
the JMAK equation. However, from the work of Bradley [20] it is clear that the JMAK 
equation is precise in the limit of large nucleation statistics. In other words, if 
boundaries can be ignored and nucleation densities are sufficiently large, then the 
JMAK equation is virtually exact. However, Eq. (1) is not applicable if conditions 
(a)-(d) are not satisfied, and in such cases other transformation equations must be 
employed. Below, two examples are considered where generalizations of Eq. (1) are 
required. 
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Weinberg and Kapral [21] derived expressions for X(t) for systems in which finite 
size as well as inhomogeneous nucleation effects were present. The theory was 
developed for both the cases of initial nucleation and continuous nucleation. A simple 
discrete space and time model was used to compute the kinetics, and analytical results 
were obtained for X(t). The validity of the analytical results were tested by comparisons 
with numerical simulations of the nucleation and growth processes for a two-dimen- 
sional version of the model. The numerical and analytical results were in precise 
agreement, confirming the theoretical formulae given for X(t). 

Weinberg [14] employed a continuum version of the approach given in Ref. [21] to 
derive the transformation laws for 2- and 3-dimensional surface-nucleated processes 
and for the crystallization kinetics of spherical particles where combined surface and 
bulk nucleation occur. For the analyses of the purely surface-nucleated transform- 
ations, initial seeding (nucleation) was e, ssumed. Analytical expressions were given for 
X(t) and the influence of sample geometry on transformation rate was explored. It was 
found that 2-D samples of equal area but different shape transformed at nearly equal 
rates if their perimeter lengths were similar. Standard JMAK theory, e.g. Eq. (1), 
indicates that a plot of l n ( - l n (1  -X(t))) vs. log t should be linear. However, it was 
demonstrated that such plots need not be linear for surface-nucleated crystallization. In 
considering the transformation kinetics of particles with surface and bulk nucleation, 
a model system was used which satisfied the following conditions: (a) particles are 
spherical, (b) surface nuclei are present at initial times (with seeding density/unit 
area = Pr), but nucleation occurs continuously and at a constant rate I in the bulk, (c) 
crystal growth rate U is constant and follows a spherical growth law for crystals 
nucleated on the surface or in the bulk. Explicit expressions were derived for X(t), and 
the relative importance of surface and bulk crystallization kinetics was assessed. For 
small surface-seeding probability, it was found that the crystallization kinetics were 
nearly those of a bulk-nucleated sample. However, a plot of l n ( - l n ( 1  -X(t ) ) )  vs. log t 
did not have a slope of 4 due to finite particle size effects. For  comparable values ofl/U 
and Pr, the crystallization kinetics were found to be quite similar to those from a purely 
surface-nucleated crystallization process. This feature followed from the fact that at the 
initial time all surface nuclei were present while the bulk was free of seeds. Although for 
many conditions linear l n ( - l n ( 1  -X( t ) ) )  vs. log t plots were obtained (with integer 
values of n), it was shown that such plots did not provide information regarding 
crystallization mechanism. 

The second generalization of JMAK theory deals with the influence of transient 
effects upon the crystallization rate. For 3-D spherical growth, Eq. (1) may be rewritten 
a s  

l n ( 1 -  X( t ) ) l= (41 t /3 ) f to l ( t ' )R3( t ; t ' ) d f  (2) 

in order to account for time-dependent effects. In Eq. (2), I is the nucleation rate, and 
R(t; t') is the radius of a particle at time t which nucleated at a time t'. For  interface- 
controlled crystal growth, most previous investigators have treated the time depend- 
ence of the nucleation rate, while assuming U constant, e.g. see Ref. [22] and references 
cited therein. However, Shneidman and Weinberg [-14] have shown that it is an 
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inconsistent procedure to allow the nucleation rate to be time-dependent without 
taking into account the size dependence of the growth rate. When this time-dependent 
problem is treated in a consistent manner, one finds that the corrections to the JMAK 
equation (Eq. (1)) are larger than anticipated [23, 24]. Shneidman and Weinberg found 
that corrections to the JMAK equation are particularly significant for moderate to 
small barrier heights (W*/k T < 30, where W* is the free energy barrier to form a 
critical nucleus) where nucleation rates are large. For large nucleation barriers, 
corrections to the usual t 4 law occur only in the time regime where the total 
volume-fraction crystallized is very small, and thus such corrections are unimportant. 
Furthermore, it was shown that at long times the corrections to the t 4 law cannot be 
expressed solely in terms of powers of v/t (where v is the relaxation time) since the 
correction contains a term dependent upon the logarithm of this ratio. 

Hence, for isothermal crystallization processes there are at least two situations where 
the standard JMAK equation must be generalized. For the case of small barriers to 
nucleation, transient effects will be important, and time-dependent nucleation and 
radius-dependent growth must be taken into consideration. In this situation, Eq. (1) 
will give the leading order contribution for the volume fraction crystallized. If 
nucleation occurs non-uniformly throughout the sample (such as in surface crystalliza- 
tion), then other expressions are needed for X(t). Such expressions can be derived using 
the same statistical arguments needed for the derivation of the JMAK equation. 
Finally, it should be noted that even if nucleation is uniform and transient effects are 
unimportant, corrections to Eq. (1) can arise from finite sample size effects. However, 
except for special cases where the surface area is unusually large, these corrections are 
quite small. 

In order to compute X(t), one must be able to calculate the steady-state nucleation 
rate I. About 15 years ago, comparisons were made between calculated values of I, 
using CNT, and experimental measurements for crystal nucleation in lithium disilicate 
(LS2) glass [25, 26], and a huge discrepancy was discovered. Although the temperature 
dependences of the nucleation rate was described reasonably well by CNT, the 
predicted magnitude of I was many orders of magnitude too small. Subsequently, 
James and coworkers (see Ref. [13] and references cited therein) found that the 
temperature dependences of the crystal nucleation rates in several additional silicate 
glasses were described quite precisely by CNT. Also, James demonstrated that if the 
liquid-crystal surface tension was allowed to have a weak temperature dependence, 
then calculated values of the nucleation rate (using CNT) could be made to agree quite 
well with experimental data. However, Weinberg and coworkers have found certain 
difficulties with the application of CNT to problems of nucleation in glass [27 29]. For 
example, Smith and Weinberg [27] found that CNT could not fit the magnitude or the 
temperature dependence of the measured nucleation rates in lithium diborate glass. 
Weinberg and Zanotto [28] indicated that the kinetic prefactor in CNT could be 
obtained without the use of the Stokes Einstein assumption if transient nucleation 
data were employed. They used this procedure to re-examine the temperature depend- 
ence of the crystal nucleation rate in LS2 glass and several other silicate glasses. They 
discovered that in all cases differences between CNT and experimental data appeared 
in the region of large undercoolings. Thus, they concluded that the temperature 
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dependence of the classical nucleation rate was still a matter of controversy. Shneidman 
and Weinberg [-29] used an asymptotic solution of the transient nucleation equation to 
compute the barrier to nucleation in LS2 glass. In this manner they were able to asses 
various kinetic models of nucleation. They found systematic deviations between 
experimental data and the predictions of all models, which they interpreted as either 
indicating the presence of pre-existing nuclei or the failure of CNT. 

The crystal growth rate U must be known as a function of temperature, too, in order 
to calculate the fraction crystallized at various temperatures. Unlike metallic systems 
where crystal growth is governed by thermal diffusion, the kinetics of crystal growth in 
glasses is most often interface- or diffusion-controlled. Three models have been used to 
describe interface growth in glasses [30]: normal growth, screw dislocation growth, and 
surface nucleation controlled growth. For normal growth, the growth rate may be 
expressed as 

U = va [1 - e x p ( -  ASfA T/T)  (3) 

where a is the unit distance advanced by the interface, v is the jump frequency at the 
interface, and ASf is the molar entropy of fusion in units of the gas constant. In normal 
growth, the interface is rough on an atomic scale and the crystal liquid interface is 
non-faceted. According to the work of Jackson [31,32], normal growth will occur for 
small entropy of fusion materials. The growth rate for screw dislocation growth is 

U = f v a [- 1 - exp ( - A Sf A T/T)  (4) 

where f is the fraction of preferred growth sites. In screw dislocation growth, the 
interface is smooth and faceted, and growth occurs preferentially on the steps of the 
dislocation defect. Screw dislocation growth is expected in high entropy of fusion 
materials. Finally, for surface nucleation growth, the growth rate is given by 

U = C v e x p ( -  B / T A T )  (5) 

where B and C are constants. Surface nucleation growth refers to a growth mechanism 
in which two-dimensional nuclei form on a crystal surface and grow along the surface. 
Surface nucleation growth is anticipated in high entropy fusion materials, and it is 
characterized by a smooth faceted interface. 

The status of crystal growth in glasses has been reviewed recently by Uhlmann and 
Uhlmann [33]. From Ref. [33], one observes that a limited number of quantitative 
comparisons have been made between the experimentally determined and theoretically 
predicted crystal growth rates as a function of temperature, and that for only two 
systems which are predicted to exhibit normal growth (GeO 2 and SiO2) do the 
measured temperature dependences of the growth rates agree well with theory. 
However, the experimental and theoretical magnitudes of the growth rates in these 
systems differ by about an order of magnitude. For systems with high entropies of 
fusion, there is little agreement between theory and experiment. For example, for 
systems in which growth occurs by a 2-D nucleation mechanism, a plot of the log of the 
growth rate times the viscosity vs. 1/(T(T m -  T) should be linear (where T m is the 
melting temperature). This relationship has been experimentally tested for several 
glass-forming compositions which are believed to exhibit 2-D nucleation crystal 
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growth [30, 33], and in nearly all cases the observed temperature dependence of the 
growth rate does not conform to the above-mentioned functional form although the 
magnitudes of the predicted growth rates are within an order of magnitude of those 
measured. A notable exception to these observations is the case of crystal growth in 
lithium diborate where the temperature dependence of the experimental growth rates 
at large undercoolings is described well by the 2-D nucleation crystal growth model, 
but the computed values of the growth rates are found to be many orders of magnitude 
too small [34]. 

In summary, although the basic theory required for the computation of X(t) for 
isothermal transformations is in place, a number of "loose ends" exist which make 
crystallization calculations for glasses somewhat suspect. 

3. Non-isothermal crystallization 

There have been numerous studies of non-isothermal crystallization kinetics, many 
of which are related to interpretation of non-isothermal DTA/DSC experiments 
[35-44]. For non-isothermal transformations, the fraction transformed as a function of 
time can be written in the form of Eq. (2), where now the time dependence arises from 
the temperature dependence of the nucleation and growth rates [44]. Additional 
time-dependent effects may arise if transient nucleation effects are important [46], but 
herein we focus on situations where steady-state nucleation and size-independent 
growth rates can be utilized. For such circumstances, and for constant cooling rates, 
one may transform Eq. (2) into the following expression which involves temperature 
integrals 

X(T)=(4~S  4/3) I (r ' )dT '  U(T")dT" (6) 
Ti Ti 

In Eq. (6), S is the magnitude of the cooling rate, I(T') is the steady-state nucleation 
rate, U(T") is the crystal growth rate, and T~, Tf are the initial and final temperatures. 

If one chooses T~ as the melting temperature and Tf as room temperature (or some 
sufficiently low temperature where crystallization does not occur) and selects 
X < 10 o6 as a criterion for glass formation [2], then S c, the critical cooling rate for 
glass formation, can be obtained by using these parameters in Eq. (6). Although this 
equation provides a precise expression for S c (within the framework of the quasi-steady 
scheme), several approximate methods have been utilized for critical cooling rate 
calculations. Most notably, it has been shown that reasonably good estimates ofS c may 
be obtained by the "nose method", which relies upon computing the cooling curve which 
just passes through the nose of a T - T - T  (time-temperature-transformation) diagram 
[47,48]. If T n, t n designate the temperature and time, respectively, at the nose of a 
T - T - T  diagram corresponding to X = 10-o6, then the critical cooling rate is given by 

S c = (T m - Tn)/t n (7) 

where T m is the melting temperature. It has been observed that critical cooling rates 
computed by the "nose method" were generally greater than those calculated by other 
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methods. Weinberg and coworkers [49] have provided an explanation for this finding. 
Also, an assessment of the various factors involved in critical rate calculations has been 
made [48]. In this analysis the following three ingredients were considered: (1) the 
selection of a kinetic model, e.g. use of Eq. (6) or Eq. (7), etc., (2) the choice of the 
nucleation and growth expressions, and (3) the selection of the values of several 
parameters which enter into the nucleation and growth equations. Calculations were 
performed using parameters appropriate for SiO 2 and GeO 2 glasses. It was shown that 
S~ is fairly insensitive to the kinetic model, but is quite dependent upon the material 
parameters which enter into the crystal nucleation and growth expressions. In particu- 
lar, the critical cooling rate is a strong function of the value of the liquid-crystal surface 
tension, or the Turnbull parameter [50] which approximately characterizes the latter. 
Also, S c was shown to be quite sensitive to the value of ACp/ASf (where ACp is the 
difference between crystal and liquid specific heats). 

The critical cooling rate calculations for glass formation described above assume 
that crystallization initiates homogeneously. However, it is known that most composi- 
tions devitrify by a surface crystallization mechanism, and thus traditional critical 
cooling rate calculations are limited to a particular class of compositions. Recently, 
a description of surface-initiated non-isothermal crystallization kinetics was given and 
applied to SiO 2- or GeO2-type glasses [51 ]. Calculations were performed to elucidate 
the effects of surface nuclei density and cooling rates on the crystallization kinetics. 
Also, the cooling rates required for the avoidance of a specific value crystallized were 
computed. It was demonstrated that, unlike the situation for bulk nucleation, critical 
cooling rates for glass formation in surface-initiated transformations are size-depend- 
ent. Thus, glass-formation depends not only on the cooling rate, but also upon the 
sample dimensions. 

As mentioned, about a decade ago Yinnon and Uhlmann [-16] provided a detailed 
analysis of the myriad of mathematical methods proposed for the analysis 
of DTA/DSC experiments. In the abstract of Ref. [16] it is stated, "All these 
methods are based on the Avrami treatment of transformation kinetics and define 
an effective crystallization rate coefficient having an Arrhenian temperature depen- 
dence. Several different ways of mathematically treating the data have been proposed. 
Most are shown to be based on an incorrect neglect of the temperature dependence 
of the rate coefficient." The authors go on to say, "It is further argued that in general 
the overall crystallization rate coefficient is not Arrhenian in character. Thus, 
in general, non-isothermal transformation cannot be treated analytically." In view 
of these comments, Weinberg [-52] undertook an effort to delineate those cases where 
an Arrhenian assumption might be justified. The condition of site saturation was 
imposed, and the three standard models of crystal growth were utilized. It was shown 
that for the case of normal growth, the requirement of an Arrhenian form for K, the 
reaction rate coefficient, could be satisfied by imposing a minimum value to a par- 
ameter which is proportional to the number of particles nucleated and inversely 
proportional to the heating rate. For surface nucleated or screw dislocation crystal 
growth, though, it was demonstrated that an Arrhenian form for K is not valid. 
However, even for the latter growth models if a similar parameter exceeds a critical 
value, then it was shown that the equations which describe non-isothermal DTA/DSC 
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experiments are quite close in form to those derived using an Arrhenian assumption 
for K. 

The latter analysis was limited in two respects. First, site saturation was assumed 
without discussing the anticipated domain of validity of this approximation. Also, only 
the Kissinger [53] method was considered. Thus, in a more recent work [54], the 
generality of the site saturation assumption was evaluated, and the validity of an 
Arrhenian assumption for K using other mathematical models for evaluation of 
experimental data was tested. The site saturation approximation is accurate if homo- 
geneous nucleation and growth curves are reasonably well separated. It was demon- 
strated that this is the case for most simple inorganic oxide glass-forming systems, and 
hence site saturation is a good approximation if one restricts attention to sufficiently 
high temperatures in a DTA/DSC heating experiment. Also, it was concluded that 
although plots of (l/3)ln(ln(1 - X )  1) vs. 1 /Tare  often found to be linear, only for 
certain values of the parameters which control crystallization may the slope be 
associated with an activation energy. 

4. Conclusions 

Although much information has been compiled regarding crystallization of glasses 
and supercooled liquids, difficulties still exist in producing reliable crystallization 
calculations for isothermal or non-isothermal transformations. In the case of isother- 
mal transformations, the basic theory is "in place", but problems arise due to the 
inadequacy of the nucleation and crystal growth expressions. For non-isothermal 
transformations, there is a larger gap in knowledge since no theoretical framework 
exists for the treatment of problems where transient effects are of importance. 
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